Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 55(31): 8905-8915, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27828292

RESUMO

Ultrasound (US) imaging is a widely used clinical diagnostic tool in medical imaging techniques. It is a comparatively safe, economical, painless, portable, and noninvasive real-time tool compared to the other imaging modalities. However, the image quality of US imaging is severely affected by the presence of speckle noise and blur during the acquisition process. In order to ensure a high-quality clinical diagnosis, US images must be restored by reducing their speckle noise and blur. In general, speckle noise is modeled as a multiplicative noise following a Rayleigh distribution and blur as a Gaussian function. Hereto, we propose an intelligent estimator based on artificial neural networks (ANNs) to estimate the variances of noise and blur, which, in turn, are used to obtain an image without discernible distortions. A set of statistical features computed from the image and its complex wavelet sub-bands are used as input to the ANN. In the proposed method, we solve the inverse Rayleigh function numerically for speckle reduction and use the Richardson-Lucy algorithm for de-blurring. The performance of this method is compared with that of the traditional methods by applying them to a synthetic, physical phantom and clinical data, which confirms better restoration results by the proposed method.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Ultrassonografia/métodos , Artefatos , Redes Neurais de Computação , Distribuição Normal , Imagens de Fantasmas
2.
Appl Opt ; 55(15): 4024-35, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27411128

RESUMO

Compared with other medical-imaging modalities, ultrasound (US) imaging is a valuable way to examine the body's internal organs, and two-dimensional (2D) imaging is currently the most common technique used in clinical diagnoses. Conventional 2D US imaging systems are highly flexible cost-effective imaging tools that permit operators to observe and record images of a large variety of thin anatomical sections in real time. Recently, 3D US imaging has also been gaining popularity due to its considerable advantages over 2D US imaging. It reduces dependency on the operator and provides better qualitative and quantitative information for an effective diagnosis. Furthermore, it provides a 3D view, which allows the observation of volume information. The major shortcoming of any type of US imaging is the presence of speckle noise. Hence, speckle reduction is vital in providing a better clinical diagnosis. The key objective of any speckle-reduction algorithm is to attain a speckle-free image while preserving the important anatomical features. In this paper we introduce a nonlinear multi-scale complex wavelet-diffusion based algorithm for speckle reduction and sharp-edge preservation of 2D and 3D US images. In the proposed method we use a Rayleigh and Maxwell-mixture model for 2D and 3D US images, respectively, where a genetic algorithm is used in combination with an expectation maximization method to estimate mixture parameters. Experimental results using both 2D and 3D synthetic, physical phantom, and clinical data demonstrate that our proposed algorithm significantly reduces speckle noise while preserving sharp edges without discernible distortions. The proposed approach performs better than the state-of-the-art approaches in both qualitative and quantitative measures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...